BIG NEWS: Scrapingdog is collaborating with Serpdog.

Scrape Nasdaq Stock Market Data using Python

Table of Contents

Nasdaq is a marketplace for buying and selling stocks. It was the first online stock exchange platform around the globe.

But why stock market data scraping is important? Well, it lets you do: –

  1. Sentiment analysis using blogs, news, social media status, etc.
  2. Stock market price prediction
  3. Financial analysis of any company with a single click. Obviously, you have to pass that scraped data through a Machine Learning model.

Why use Python to Scrape Nasdaq?

Python is a flexible programming language & is used extensively for web scraping. With many Python libraries for web scraping, this language is fast and reliable & has a strong community so that you can ask questions from this community whenever you get stuck.

In this blog post, we are going to scrape Tesla’s share information from Nasdaq.

Later in this blog, we will also create an alert email through which you will be notified once the stock hits the target price.

Read More: A Guide on Web Scraping using Python from Scratch!!

Let’s Start Scraping Stock Data from Nasdaq!

I am assuming you have already installed Python on your machine. Then we will create a folder and install all the required libraries in it.

>> mkdir nasdaq
>> pip install selenium
>> pip install beautifulsoup4

We have installed Selenium and BeautifulSoup. Selenium is a browser automating tool, it will be used to load NASDAQ target URL in a real Chrome browser. BeautifulSoup aka BS4 will be used for clean data extraction from raw HTML returned by selenium.

We could have used the requests library also but since NASDAQ loads everything using javascript then making a normal HTTP GET request would have been useless. If you want to learn more about the difference between how websites load data using Javascript and AJAX requests then you can read this blog on web scraping Zillow for complete information on this topic.

Our target URL will be this and we will extract the following data points from the page.

  1. Name of the stock
  2. Current Ask Price
  3. P/E Ratio
  4. Dividend Rate
  5. 1-year target

For the purpose of this blog and tutorial on scraping Nasdaq, we will be extracting these data points only!

Create a Python file by the name you like and import all the libraries.

from bs4 import BeautifulSoup
from selenium import webdriver
import time

Let us first track the HTML location of each of these elements by inspecting them.

The name is stored under the span tag with the class name “symbol-page-header__name”.

The asking price is also stored under the span tag with a class name as “summary-data__table-body”.

Both P/E ratio and Dividend date are part of the second tbody element of the table element.

1-year target is part of the first tbody element of the table element.

Finally, we have the exact locations of each of these elements. Let’s extract them all step-by-step.

from selenium.webdriver.common.keys import Keys

PATH = 'C:\Program Files (x86)\chromedriver.exe'

l=list()
obj={}

target_url = "https://www.nasdaq.com/market-activity/stocks/tsla"

driver=webdriver.Chrome(PATH)

driver.get(target_url)
html = driver.find_element_by_tag_name('html')
html.send_keys(Keys.END)
time.sleep(2)
resp = driver.page_source
driver.close()

We have also imported “Keys” method of selenium to scroll down the page in order to load each and every element of the page. Then we defined our Chromium browser location and along with that we also defined our target URL.

Then we extracted all the raw HTML using the Selenium web driver and after receiving all the HTML code we closed the driver using the .close() function.

soup=BeautifulSoup(resp,'html.parser')

try:
    obj["name"]=soup.find("span",{"class":"symbol-page-header__name"}).text
except:
    obj["name"]=None

try:
    obj["askPrice"]=soup.find("span",{"class":"symbol-page-header__pricing-ask"}).text
except:
    obj["askPrice"]=None

tables = soup.find("table",{"class":"summary-data__table"}).find_all("tbody",{"class":"summary-data__table-body"})
print(tables)
table1 = tables[0]
table2=tables[1]

try:
    obj["P/E Ratio"]=table2.find_all("tr",{"class":"summary-data__row"})[0].find("td",{"class":"summary-data__cell"}).text
except:
    obj["P/E Ratio"]=None

try:
    obj["1-year budget"]=table1.find_all("tr",{"class":"summary-data__row"})[3].find("td",{"class":"summary-data__cell"}).text
except:
    obj["1-year budget"]=None

try:
    obj["Dividend"]=table2.find_all("tr",{"class":"summary-data__row"})[7].find("td",{"class":"summary-data__cell"}).text
except:
    obj["Dividend"]=None

l.append(obj)
obj={}

print(l)

Then after closing the browser, we created an HTML tree using BS4. From that tree, we are going to extract our data of interest using .find() function. We are going to use the exact same HTML location that we found out about above.

The table part might be a little confusing for you. Let me explain it.

First, we find the table element using .find(), and then we have .find_all() to find both of these tbody elements. The first tbody element consists of a 1-year target value and the other one consist of both dividend date and P/E ratio. I hope your confusion is clear now.

Once you run this code you get all the data we were looking for in an array.

Complete Code

from bs4 import BeautifulSoup
from selenium import webdriver
import time
from selenium.webdriver.common.keys import Keys
PATH = 'C:\Program Files (x86)\chromedriver.exe'

l=list()
obj={}

target_url = "https://www.nasdaq.com/market-activity/stocks/tsla"

driver=webdriver.Chrome(PATH)

driver.get(target_url)
html = driver.find_element_by_tag_name('html')
html.send_keys(Keys.END)
time.sleep(2)
resp = driver.page_source
driver.close()
soup=BeautifulSoup(resp,'html.parser')

try:
    obj["name"]=soup.find("span",{"class":"symbol-page-header__name"}).text
except:
    obj["name"]=None

try:
    obj["askPrice"]=soup.find("span",{"class":"symbol-page-header__pricing-ask"}).text
except:
    obj["askPrice"]=None

tables = soup.find("table",{"class":"summary-data__table"}).find_all("tbody",{"class":"summary-data__table-body"})
print(tables)
table1 = tables[0]
table2=tables[1]

try:
    obj["P/E Ratio"]=table2.find_all("tr",{"class":"summary-data__row"})[0].find("td",{"class":"summary-data__cell"}).text
except:
    obj["P/E Ratio"]=None

try:
    obj["1-year budget"]=table1.find_all("tr",{"class":"summary-data__row"})[3].find("td",{"class":"summary-data__cell"}).text
except:
    obj["1-year budget"]=None

try:
    obj["Dividend"]=table2.find_all("tr",{"class":"summary-data__row"})[7].find("td",{"class":"summary-data__cell"}).text
except:
    obj["Dividend"]=None

l.append(obj)
obj={}

print(l)

Target Stock Price Alert via Email

What if you want to get an email alert once your target stock stocks hit a certain price? Well for that web scraping can be very helpful. Selling/buying a stock at the right time without raising your anxiety levels can be done easily with web scraping.

We will use the schedule library of Python that will help you to run the code at any given interval of time. Let’s split this section into two parts. In the first section, we will run the crawler every 15 minutes, and in the second section, we will mail ourselves once the price hits the target spot.

Part I — Running Crawler every 24 hours

We will run our main function every 15 minutes just to keep a regular check on the stock price.

from bs4 import BeautifulSoup
from selenium import webdriver
import time
from selenium.webdriver.common.keys import Keys
import schedule

PATH = 'C:\Program Files (x86)\chromedriver.exe'

l=list()
obj={}

target_url = "https://www.nasdaq.com/market-activity/stocks/tsla"

def tracker():
    driver=webdriver.Chrome(PATH)

    driver.get(target_url)
    html = driver.find_element_by_tag_name('html')
    html.send_keys(Keys.END)
    time.sleep(2)
    resp = driver.page_source
    driver.close()
    soup=BeautifulSoup(resp,'html.parser')

    try:
        obj["name"]=soup.find("span",{"class":"symbol-page-header__name"}).text
    except:
        obj["name"]=None

    try:
        obj["askPrice"]=soup.find("span",{"class":"symbol-page-header__pricing-ask"}).text
    except:
        obj["askPrice"]=None

    tables = soup.find("table",{"class":"summary-data__table"}).find_all("tbody",{"class":"summary-data__table-body"})
    print(tables)
    table1 = tables[0]
    table2=tables[1]

    try:
        obj["P/E Ratio"]=table2.find_all("tr",{"class":"summary-data__row"})[0].find("td",{"class":"summary-data__cell"}).text
    except:
        obj["P/E Ratio"]=None

    try:
        obj["1-year budget"]=table1.find_all("tr",{"class":"summary-data__row"})[3].find("td",{"class":"summary-data__cell"}).text
    except:
        obj["1-year budget"]=None

    try:
        obj["Dividend"]=table2.find_all("tr",{"class":"summary-data__row"})[7].find("td",{"class":"summary-data__cell"}).text
    except:
        obj["Dividend"]=None

    l.append(obj)
    obj={}

    print(l)

if __name__ == "__main__":
    schedule.every().minute.at(":15").do(tracker)
    while True:
      schedule.run_pending()

Here inside our main function, we have used the schedule library for running the tracker function every 15 minutes. Now, let’s send an email to ourselves for a price alert.

Part II — Mail

You will only send an email when your target price is hit otherwise you will not send any emails. So, we have to create an if/else condition where we will mention that if the price is our target price then send an email otherwise skip it.

Let us first set this if/else condition and then we will create our mail function. I am assuming our target price is 278 and the stock is in a bull mode which means the stock is currently rising. So, once it hits the 278 price we will receive an email for selling it.

from bs4 import BeautifulSoup
from selenium import webdriver
import time
from selenium.webdriver.common.keys import Keys
import schedule

PATH = 'C:\Program Files (x86)\chromedriver.exe'

l=list()
obj={}

target_url = "https://www.nasdaq.com/market-activity/stocks/tsla"

def tracker():
    driver=webdriver.Chrome(PATH)

    driver.get(target_url)
    html = driver.find_element_by_tag_name('html')
    html.send_keys(Keys.END)
    time.sleep(2)
    resp = driver.page_source
    driver.close()
    soup=BeautifulSoup(resp,'html.parser')

    try:
        obj["name"]=soup.find("span",{"class":"symbol-page-header__name"}).text
    except:
        obj["name"]=None

    try:
        obj["askPrice"]=soup.find("span",{"class":"symbol-page-header__pricing-ask"}).text
    except:
        obj["askPrice"]=None

tables = soup.find("table",{"class":"summary-data__table"}).find_all("tbody",{"class":"summary-data__table-body"})
    print(tables)
    table1 = tables[0]
    table2=tables[1]

    try:
        obj["P/E Ratio"]=table2.find_all("tr",{"class":"summary-data__row"})[0].find("td",{"class":"summary-data__cell"}).text
    except:
        obj["P/E Ratio"]=None
    try:
        obj["1-year budget"]=table1.find_all("tr",{"class":"summary-data__row"})[3].find("td",{"class":"summary-data__cell"}).text
    except:
        obj["1-year budget"]=None

    try:
        obj["Dividend"]=table2.find_all("tr",{"class":"summary-data__row"})[7].find("td",{"class":"summary-data__cell"}).text
    except:
        obj["Dividend"]=None

    if(obj["askPrice"] >= 278):
        mail()

    l.append(obj)
    obj={}

    print(l)

if __name__ == "__main__":
    schedule.every().minute.at(":15").do(tracker)
    while True:
     schedule.run_pending()

As you can see I am comparing the current price with the target price if it is greater than or equal to 278 we are going to sell it otherwise the code will keep running every 15 minutes. Now, let’s define our mail function.

from bs4 import BeautifulSoup
from selenium import webdriver
import time
from selenium.webdriver.common.keys import Keys
import schedule
import smtplib

PATH = 'C:\Program Files (x86)\chromedriver.exe'

l=list()
obj={}

target_url = "https://www.nasdaq.com/market-activity/stocks/tsla"

def mail():
    Msg = "Stock has hit your target price, it's time to earn some cash."
    server = smtplib.SMTP('smtp.gmail.com', 587)
    server.ehlo()
    server.starttls()
    server.login("[email protected]", "xxxx")
    SUBJECT = "Stock Price Alert"
    message = 'From: [email protected] \nSubject: {}\n\n{}'.format(SUBJECT, Msg)
    server.sendmail("[email protected]", '[email protected]', message)

def tracker():
    driver=webdriver.Chrome(PATH)

    driver.get(target_url)
    html = driver.find_element_by_tag_name('html')
    html.send_keys(Keys.END)
    time.sleep(2)
    resp = driver.page_source
    driver.close()
    soup=BeautifulSoup(resp,'html.parser')

try:
        obj["name"]=soup.find("span",{"class":"symbol-page-header__name"}).text
except:
        obj["name"]=None

try:
        obj["askPrice"]=soup.find("span",{"class":"symbol-page-header__pricing-ask"}).text
except:
        obj["askPrice"]=None

tables = soup.find("table",{"class":"summary-data__table"}).find_all("tbody",{"class":"summary-data__table-body"})
    print(tables)
    table1 = tables[0]
    table2=tables[1]

try:
        obj["P/E Ratio"]=table2.find_all("tr",{"class":"summary-data__row"})[0].find("td",{"class":"summary-data__cell"}).text
except:
        obj["P/E Ratio"]=None

try:
        obj["1-year budget"]=table1.find_all("tr",{"class":"summary-data__row"})[3].find("td",{"class":"summary-data__cell"}).text
except:
        obj["1-year budget"]=None

try:
        obj["Dividend"]=table2.find_all("tr",{"class":"summary-data__row"})[7].find("td",{"class":"summary-data__cell"}).text
except:
        obj["Dividend"]=None

if(obj["askPrice"] == 278):
        mail()

 l.append(obj)
    obj={}
    print(l)

if __name__ == "__main__":
    schedule.every().minute.at(":15").do(tracker)
    while True:
      schedule.run_pending()

In our mail function, we have used smtplib to send an email through Gmail id. You can set your own subject and message.

So, this was our alert mechanism which can be used on any website for price alerts. You can even use it for tracking Google keywords by scraping Google.

How to Web Scrape Nasdaq using Scrapingdog

Nasdaq is a very popular data-rich stock exchange website and many people crawl it on a regular basis. As we have discussed above Nasdaq cannot be scraped with normal HTTP GET requests, so we need headless Chrome support for scraping it and if you want to do it scale then it takes a lot of resources. Let’s see how Scrapingdog can help scrape this website.

Scrapingdog is a data scraping API that can help you create a seamless data pipeline in no time. You can start by signing up and making a test call directly from your dashboard.

Let’s go step by step to understand how you can use Scrapingdog to scrape Nasdaq without spending on some resource-hungry architecture. Oh! I almost forgot to tell you that for new users first 1000 calls are absolutely free.

First, you have to sign up!

Complete Code

Here we can take advantage of the requests library.

from bs4 import BeautifulSoup
import schedule
import smtplib
import requests

PATH = 'C:\Program Files (x86)\chromedriver.exe'

l=list()
obj={}

target_url = "https://api.scrapingdog.com/scrape?api_key=YOUR-API-KEY&url=https://www.nasdaq.com/market-activity/stocks/tsla"

def mail():
    attackMsg = "Stock has hit your target price, it's time to earn some cash."
    server = smtplib.SMTP('smtp.gmail.com', 587)
    server.ehlo()
    server.starttls()
    server.login("[email protected]", "xxxx")
    SUBJECT = "Stock Price Alert"
    message = 'From: [email protected] \nSubject: {}\n\n{}'.format(SUBJECT, attackMsg)
    server.sendmail("[email protected]", '[email protected]', message)

def tracker():
    resp = requests.get(target_url).text   
    soup=BeautifulSoup(resp,'html.parser')

    try:
        obj["name"]=soup.find("span",{"class":"symbol-page-header__name"}).text
    except:
        obj["name"]=None

    try:
        obj["askPrice"]=soup.find("span",{"class":"symbol-page-header__pricing-ask"}).text
    except:
        obj["askPrice"]=None

tables = soup.find("table",{"class":"summary-data__table"}).find_all("tbody",{"class":"summary-data__table-body"})
    print(tables)
    table1 = tables[0]
    table2=tables[1]

    try:
        obj["P/E Ratio"]=table2.find_all("tr",{"class":"summary-data__row"})[0].find("td",{"class":"summary-data__cell"}).text
    except:
        obj["P/E Ratio"]=None

    try:
        obj["1-year budget"]=table1.find_all("tr",{"class":"summary-data__row"})[3].find("td",{"class":"summary-data__cell"}).text
    except:
        obj["1-year budget"]=None

    try:
        obj["Dividend"]=table2.find_all("tr",{"class":"summary-data__row"})[7].find("td",{"class":"summary-data__cell"}).text
    except:
        obj["Dividend"]=None

    if(obj["askPrice"] == 278):
        mail()

    l.append(obj)
    obj={}

    print(l)

if __name__ == "__main__":
    schedule.every().minute.at(":15").do(tracker)
    while True:
     schedule.run_pending(

You have to place your own API key in the target_url variable. Everything remains the same except we have removed the selenium driver and we are now making a normal GET request to the Scrapingdog API.

This helps you to save expenses of resources and avoid getting blocked while scraping at scale.

Forget about getting blocked while scraping the Web

Try out Scrapingdog Web Scraping API & Scrape Yellow Pages at Scale without Getting Blocked

Conclusion

We can create a price-tracking alert system for any website for example flight prices from websites like Expedia, product pricing from Amazon, etc. Python can help you create these crawlers with very little effort. But obviously, there is some limitation when you scrape these websites without Web Scraping API.

I hope you like this little tutorial and if you do then please do not forget to share it with your friends and on social media.

Frequently Asked Questions

Try Scrapingdog for free today!! The first 1000 GET requests are free and get reset every month. Lite Plan is $30 and offers 200000 requests.

No, It never gets blocked. Scrapingdog’s Web Scraping API is made to surpass any blockage so that you can scrape Nasdaq without any blockage. Check out our Pricing Plans here!!

Additional Resources

Web Scraping with Scrapingdog

Scrape the web without the hassle of getting blocked
My name is Manthan Koolwal and I am the founder of scrapingdog.com. I love creating scraper and seamless data pipelines.
Manthan Koolwal

Web Scraping with Scrapingdog

Scrape the web without the hassle of getting blocked

Recent Blogs

How to Scrape Data from Google Maps using Python

In this blog, we have scraped google map reviews using beautifulsoup and playwright library.

Web Scraping with R (using rvest)

In this post, we will learn to scrape websites using R and other libraries.